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Lie bialgebra quantizations of the oscillator algebra and
their universal R-matrices
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Departamento de Fı́sica, Universidad de Burgos, Pza Misael Bañuelos, E-09001, Burgos, Spain

Received 25 January 1996

Abstract. All coboundary Lie bialgebras and their corresponding Poisson–Lie structures are
constructed for the oscillator algebra generated by{N, A+, A−, M}. Quantum oscillator algebras
are derived from these bialgebras by using the Lyakhovsky and Mudrov formalism and, for some
cases, quantizations at both algebra and group levels are obtained, including their universalR-
matrices.

1. Introduction

Deformed Heisenberg and oscillator algebras have recently been the focus of many
investigations coming from various directions. Among them, we would like to quote
the construction of deformed statistics [1], the use ofq-Heisenberg algebras to describe
composite particles [2], the description of certain classes of exactly solvable potentials in
terms of aq-Heisenberg dynamical symmetry [3], the link between deformed oscillator
algebras and superintegrable systems [4, 5] and the relations between these deformed
algebras andq-orthogonal polynomials [6].

Quantum universal enveloping algebras (QUEAs) are much more selective deformations
than general modifications of the commutation rules of a given algebra. In particular, the
interest of finding Hopf algebra deformations of the oscillator algebra is twofold: first,
because of the relevant role played by Hopf algebras to build up second quantization, as
has been recently discussed in [7], and second, a quasitriangular quantum oscillator algebra
has been related to Yang–Baxter systems and link invariants in [8].

The aim of this paper is to provide a systematic study of the quantum universal
enveloping oscillator algebras underlying possible further generalizations of these results.
A brief summary of the oscillator algebra and group is given in section 2. Since every
QUEA defines uniquely a Lie bialgebra structure on the undeformed algebra, in section 3
we obtain and classify all coboundary Lie bialgebra structures for the harmonic oscillator
algebra, as well as their corresponding Poisson–Lie brackets. In section 4 we make use of
the Lyakhovsky and Mudrov formalism [9] in order to build up the deformed coproducts
linked to all these Lie harmonic oscillator bialgebras. A complete quantization (including
universalR-matrices) of two particular classes of non-standard (triangular) bialgebras is
provided: the former is the natural ‘extension’ of the non-standard deformation of the 1+ 1
Poincaŕe algebra discussed in [10] and the latter is a new three parameter quantization.

To our knowledge, the literature on Hopf algebra deformations of the oscillator algebra
includes only the deformation given in [8, 11] and some new results that have been recently
given in [12] by computing the dual of an arbitrary quantum oscillator group obtained by
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following anR-matrix approach in a particular matrix representation (see [13–15]). Among
these known deformations, the former can be easily included within our classification
at the Lie bialgebra level, and can thus be obtained without making use of contraction
procedures. On the other hand, our method gives explicit (and universal) expressions for
the oscillator QUE algebras linked to the quantizations of [12] which are coboundaries.
The procedure outlined here precludes cumbersome duality computations and leads to rather
simple candidates for universalR-matrices.

2. Classical oscillator algebra and group

The oscillator Lie algebrah4 is generated by{N, A+, A−, M} with Lie brackets

[N, A+] = A+ [N, A−] = −A− [A−, A+] = M [M, · ] = 0. (2.1)

Besides the central generatorM there exists another Casimir invariant

C = 2NM − A+A− − A−A+. (2.2)

A 3 × 3 real matrix representationD of (2.1) is given by:

D(N) =
( 0 0 0

0 1 0
0 0 0

)
D(A+) =

( 0 0 0
0 0 1
0 0 0

)

D(A−) =
( 0 1 0

0 0 0
0 0 0

)
D(M) =

( 0 0 1
0 0 0
0 0 0

)
. (2.3)

The expression for a generic element of the oscillator groupH4 coming from this
representation is:

TD = exp{mD(M)} exp{a−D(A−)} exp{a+D(A+)} exp{nD(N)}

=
( 1 a−eN m + a−a+

0 eN a+
0 0 1

)
. (2.4)

The group law for the coordinatesm, a−, a+ and n is obtained by means of matrix
multiplication TD ′′ = TD ′ · TD:

n′′ = n + n′, m′′ = m + m′ − a−a′
+ e−n′

a′′
+ = a′

+ + a+ en′
a′′

− = a′
− + a− e−n′

. (2.5)

Left and right invariant vector fields are also deduced from (2.4) and read

XL
N = ∂N XL

A+ = eN∂a+ XL
A− = e−N∂a− − a+ e−N∂m XL

M = ∂m (2.6)

XR
N = ∂N + a+∂a+ + a−∂a− XR

A+ = ∂a+ − a−∂m XR
A− = ∂a− XR

M = ∂m. (2.7)

The Heisenberg algebra can be seen as the subalgebra〈A+, A−, M〉 of h4 and the
Heisenberg group〈a+, a−, m〉 is recovered by taking the coordinaten ≡ 0 in H4. Moreover,
h4 can be seen as a centrally extended (1+1) Poincaré algebra (byM). This fact will be
useful in the quantization process.
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3. Coboundary oscillator Lie bialgebras

Let g be a Lie algebra and letr be an element ofg ∧ g. The cocomutatorδ : g → g ∧ g

given by

δ(X) = [1 ⊗ X + X ⊗ 1, r] X ∈ g (3.1)

defines a coboundary Lie bialgebra(g, δ(r)) if and only if r fulfills the modified classical
Yang–Baxter equation (YBE)

[X ⊗ 1 ⊗ 1 + 1 ⊗ X ⊗ 1 + 1 ⊗ 1 ⊗ X, [[r, r]] ] = 0 X ∈ g (3.2)

where [[r, r]] is the Schouten bracket defined by

[[r, r]] := [r12, r13] + [r12, r23] + [r13, r23] (3.3)

and, if r = rijXi ⊗ Xj , we have denotedr12 = rijXi ⊗ Xj ⊗ 1, r13 = rijXi ⊗ 1 ⊗ Xj and
r23 = rij 1 ⊗ Xi ⊗ Xj .

When ther-matrix is such that [[r, r]] = 0 (classical YBE), we shall say that(g, δ(r))

is a non-standard(or triangular) Lie bialgebra. In contrast, a solutionr of (3.2) with
non-vanishing Schouten bracket will give rise to a so-calledstandardLie bialgebra.

We recall that, ifg = Lie(G), the (unique) Poisson–Lie structure onC∞(G) linked to
a fixed bialgebra(g, δ(r)) is given by the Sklyanin bracket

{9, 8} = rαβ
(
XL

α 9XL
β 8 − XR

α 9XR
β 8

)
9, 8 ∈ C∞(G) (3.4)

whereXL
α andXR

τ are the left and right invariant vector fields ofG, respectively.
In particular, forh4 we shall consider an arbitrary elementr, which can be written in

terms of six (real) coefficients:

r = α+ N ∧ A+ + α−N ∧ A− + ϑ N ∧ M + ξ A+ ∧ A− + β+A+ ∧ M + β−A− ∧ M. (3.5)

It is a matter of computation to prove that the corresponding Schouten bracket forr (3.5) is

[[r, r]] = α+ (ξ + ϑ) N ∧ M ∧ A+ + α− (ξ − ϑ) N ∧ M ∧ A−
−2α+α−N ∧ A+ ∧ A− + (α+β− + α−β+ − ξ2) M ∧ A+ ∧ A−. (3.6)

From this expression it follows that the modified classical YBE (3.2) is fulfilled provided
that

α+α− = 0 α+(ξ + ϑ) = 0 α−(ξ − ϑ) = 0. (3.7)

The solutions of this system are splitted into three classes:α+ 6= 0, α− 6= 0 and
α+ = α− = 0. For each of them we shall distinguish between non-standard ([[r, r]] = 0)
and standard Lie bialgebras as follows.

Type I+. If α+ 6= 0 we haveα− = 0 andξ = −ϑ . The Schouten bracket reduces to:

[[r, r]] = (α+β− − ϑ2) (M ∧ A+ ∧ A−). (3.8)

Therefore ifα+β− − ϑ2 6= 0 we have standard solutions and whenβ− = ϑ2/α+ we are
considering non-standard ones.

Type I−. If α− 6= 0 equations (3.7) implyα+ = 0 andξ = ϑ . The Schouten bracket is
now

[[r, r]] = (α−β+ − ϑ2)(M ∧ A+ ∧ A−). (3.9)

Standard solutions are obtained whenα−β+ − ϑ2 6= 0, while non-standard ones correspond
to β+ = ϑ2/α−.
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Table 1. Coboundary oscillator Lie bialgebras.

Type I+
Standard Non-standard
(α+ 6= 0 andα+β− − ϑ2 6= 0) (α+ 6= 0)

r α+N ∧ A+ + ϑ(N ∧ M − A+ ∧ A−) α+N ∧ A+ + ϑ(N ∧ M − A+ ∧ A−)

+β+A+ ∧ M + β−A− ∧ M +β+A+ ∧ M + (ϑ2/α+)A− ∧ M

δ(N) α+N ∧ A+ − β−A− ∧ M + β+A+ ∧ M α+N ∧ A+ − (ϑ2/α+)A− ∧ M + β+A+ ∧ M

δ(A+) 0 0
δ(A−) α+(A− ∧ A+ + N ∧ M) + 2ϑA− ∧ M α+(A− ∧ A+ + N ∧ M) + 2ϑA− ∧ M

δ(M) 0 0

Type I−
Standard Non-standard
(α− 6= 0 andα−β+ − ϑ2 6= 0) (α− 6= 0)

r α−N ∧ A− + ϑ(N ∧ M + A+ ∧ A−) α−N ∧ A− + ϑ(N ∧ M + A+ ∧ A−)

+β+A+ ∧ M + β−A− ∧ M +(ϑ2/α−)A+ ∧ M + β−A− ∧ M

δ(N) −α−N ∧ A− + β+A+ ∧ M − β−A− ∧ M −α−N ∧ A− + (ϑ2/α−)A+ ∧ M − β−A− ∧ M

δ(A+) −α−(A+ ∧ A− + N ∧ M) − 2ϑA+ ∧ M −α−(A+ ∧ A− + N ∧ M) − 2ϑA+ ∧ M

δ(A−) 0 0
δ(M) 0 0

Type II
Standard
(ξ 6= 0) Non-standard

r ϑN ∧ M + ξA+ ∧ A− ϑN ∧ M + β+A+ ∧ M + β−A− ∧ M

+β+A+ ∧ M + β−A− ∧ M

δ(N) β+A+ ∧ M − β−A− ∧ M β+A+ ∧ M − β−A− ∧ M

δ(A+) −(ϑ + ξ)A+ ∧ M −ϑA+ ∧ M

δ(A−) (ϑ − ξ)A− ∧ M ϑA− ∧ M

δ(M) 0 0

Type II. Finally, we consider the case withα+ = 0; if α− 6= 0 we are again in type I−,
so we must also takeα− = 0 in order to have three disjoint sets of solutions. In this case
equations (3.7) are automatically satisfied and the Schouten bracket is

[[r, r]] = −ξ2 M ∧ A+ ∧ A−. (3.10)

Then the conditionξ 6= 0 gives rise to standard solutions andξ = 0 to non-standard ones.
All the information concerning this classification of coboundary oscillator Lie bialgebras

is summarized in table 1. Poisson–Lie structures for the oscillator group are deduced via
the Sklyanin bracket (3.4) and presented in table 2.

Note that this classification is based in the use of skew-symmetricr-matrices. This
implies no loss of generality: given an arbitrary element ofg ⊗ g, the mapδ generated by
(3.1) has to be skew-symmetric to give rise to a Lie bialgebra. This amounts to impose
Ad⊗2-invariance on the symmetric part ofr and, therefore,r will generate the same Lie
bialgebra as its skew-symmetric part [16]. In particular, it can be easily checked that the
more general elementη of h4 ⊗ h4 such that

[X ⊗ 1 + 1 ⊗ X, η] = 0 X ∈ {N, A+, A−, M} (3.11)

is given by

η = τ1(N ⊗ M + M ⊗ N − A+ ⊗ A− − A− ⊗ A+) + τ2 M ⊗ M (3.12)

i.e. a linear combination of two terms directly related to the two Casimirs ofh4.
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Table 2. Poisson–Lie brackets on the oscillator group.

Type I+
Standard Non-standard
(α+ 6= 0 andα+β− − ϑ2 6= 0) (α+ 6= 0)

{n, a+} α+(en − 1) α+(en − 1)

{n, a−} 0 0
{a−, a+} α+a− α+a−
{n, m} α+a− α+a−
{a+, m} α+a−a+ + β+(en − 1) α+a−a+ + β+(en − 1)

{a−, m} −α+a2− + 2ϑa− + β−(e−n − 1) −α+a2− + 2ϑa− + (ϑ2/α+)(e−n − 1)

Type I−
Standard Non-standard
(α− 6= 0 andα−β+ − ϑ2 6= 0) (α− 6= 0)

{n, a+} 0 0
{n, a−} α−(e−n − 1) α−(e−n − 1)

{a−, a+} α−a+ α−a+
{n, m} −α−a+e−n −α−a+e−n

{a+, m} −2ϑa+ + β+(eN − 1) −2ϑa+ + (ϑ2/α−)(en − 1)

{a−, m} β−(e−n − 1) β−(e−n − 1)

Type II
Standard
(ξ 6= 0) Non-standard

{n, a+} 0 0
{n, a−} 0 0
{a−, a+} 0 0
{n, m} 0 0
{a+, m} −(ϑ + ξ)a+ + β+(en − 1) −ϑa+ + β+(en − 1)

{a−, m} (ϑ − ξ)a− + β−(e−n − 1) ϑa− + β−(e−n − 1)

4. Quantization

In this section we first show how the Lyakhovsky and Mudrov (LM) formalism [9] allows
all the cocommutators of the oscillator bialgebras previously found to generate coassociative
coproducts in a straightforward way. Afterwards, we shall construct commutation rules and
universal quantumR-matrices for some of these bialgebra quantizations.

4.1. The Lyakhovsky–Mudrov formalism

Let us start with a short resume of the LM formalism which applies to an associative algebra
E over C with unit and generated byn commuting elementsHi andm additional elements
Xj . For anym × m numerical matrixµ, by µ H we understand the matrixµ with all its
entries multiplied byH . If P is anm × m matrix with entriespkl ∈ E, thekth component
of P ⊗̇ X is defined as

(P ⊗̇ X)k =
m∑

l=1

pkl ⊗ Xl. (4.1)

The main LM statement [9] is thatE can be endowed with a coalgebra structure as follows
(where we have denoted byσ the permutation mapσ(a ⊗ b) = b ⊗ a).
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Proposition 1. Let {1, H1, . . . , Hn, X1, . . . , Xm} a basis of an associative algebraE over
C verifying the conditions

[Hi, Hj ] = 0 i, j = 1, . . . , n. (4.2)

Let µi , νj (i, j = 1, . . . , n) be a set ofm × m complex matrices such that

[µi , νj ] = [µi , µj ] = [ν i , νj ] = 0 i, j = 1, . . . , n. (4.3)

Let X be a column vector with componentsXl (l = 1, . . . , m). The coproduct and the
counit

1(1) = 1 ⊗ 1 1(Hi) = 1 ⊗ Hi + Hi ⊗ 1

1(X) = exp

( n∑
i=1

µiHi

)
⊗̇ X + σ

(
exp

( n∑
i=1

ν iHi

)
⊗̇ X

)
(4.4)

ε(1) = 1 ε(Hi) = ε(Xl) = 0 i = 1, . . . , n; l = 1, . . . m (4.5)

endow(E, 1, ε) with a coalgebra structure.

The resulting coalgebra can be seen as a multiparametric deformation where the
deformation parameters are the entries of the matricesµi andνj . If we are able to find a
compatible multiplication with the coproduct (4.4) we will have finally obtained a quantum
algebra.

It is worth remarking that this formalism encodes in the set of matricesµi andνj the
whole coalgebra structure. In fact, the role of these matrices is, essentially, to reflect the
Lie bialgebra underlying a given quantum deformation. This can be clearly appreciated by
taking the first order (in all the parameters) of (4.4):

1(1)(X) =
( n∑

i=1

µiHi

)
⊗̇ X + σ

(( n∑
i=1

ν iHi

)
⊗̇ X

)
(4.6)

and recalling that the cocommutatorδ corresponds to the co-antisymmetric part of (4.6). It
can be written in ‘matrix’ form as

δ(X) = 1(1)(X) − σ ◦ 1(1)(X). (4.7)

We would like to emphasize the following points.

• The commuting elementsHi are the primitive generators.
• The cocommutatorδ(Xi) does not contain terms of the formHi ∧ Hj .
• The same cocommutator (4.7) can be obtained from different choices of the matrices

µi andνj . This means that different sets of matrices might lead to right quantizations, all
of them having the same first-order terms in the deformation parameters. Moreover, we can
chooseµi = 0 as a representative of all these quantizations and we shall obtain

δ(X) = −
( n∑

i=1

ν iHi

)
∧̇ X = −

( n∑
i=1

ν iHi

)
⊗̇ X + σ

( n∑
i=1

ν iHi

)
⊗̇ X. (4.8)

Now let us reverse somehow the LM formalism to try to find in which way the oscillator
Lie bialgebras given in table 1 can be recovered by a suitable choice of the matricesµi

andνj . Of course, the benefit of such a situation is to be able to ‘exponentiate’ directly the
bialgebra (4.8) to a full coalgebra (4.4)–(4.5).

Let us start with non-standard type I+ oscillator bialgebras. By denotingH1 ≡ A+,
H2 ≡ M, X1 ≡ N , X2 ≡ A−, we see that [H1, H2] = 0 and there exists a term of the
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type H1 ∧ H2 ≡ A+ ∧ M within the cocommutatorδ(N); however, this obstruction can be
circumvented by defining a new generator in the form

N ′ = N − (β+/α+)M. (4.9)

Hence, the cocommutators for the non-primitive generatorsN ′ andA− can be written as

δ

(
N ′

A−

)
=

( −α+A+ 0
0 −α+A+

)
∧̇

(
N ′

A−

)
+

(
0 (ϑ2/α+)M

−α+M −2ϑM

)
∧̇

(
N ′

A−

)
.

(4.10)

In view of this expression, the matricesµi andνj can be chosen as

µ1 = µ2 =
(

0 0
0 0

)
ν1 =

(
α+ 0
0 α+

)
ν2 =

(
0 −ϑ2/α+

α+ 2ϑ

)
. (4.11)

Now, the set of conditions of proposition 1 are fulfilled, and we can use this result to get
the coproducts:

1

(
N ′

A−

)
= exp

{(
0 0
0 0

)}
⊗̇

(
N ′

A−

)
+σ

(
exp

{(
α+A+ −(ϑ2/α+)M

α+M α+A+ + 2ϑM

)}
⊗̇

(
N ′

A−

))
=

(
1 ⊗ N ′ + N ′ ⊗ (1 − ϑM) eα+A++ϑM − (ϑ2/α+)A− ⊗ M eα+A++ϑM

1 ⊗ A− + A− ⊗ (1 + ϑM) eα+A++ϑM + α+N ′ ⊗ M eα+A++ϑM

)
.

(4.12)

We can finally return to the initial basis elements, thus obtaining a three-parameter QUEA
(denoted byU(I+n)

α+,ϑ,β+(h4)) such that

1(N) = 1 ⊗ N + N ⊗ (1 − ϑM) eα+A++ϑM − (ϑ2/α+)A− ⊗ M eα+A++ϑM

+(β+/α+)M ⊗ (1 − (1 − ϑM) eα+A++ϑM) (4.13)

1(A−) = 1 ⊗ A− + A− ⊗ (1 + ϑM) eα+A++ϑM

+(α+N − β+M) ⊗ M eα+A++ϑM.

This quantization procedure can be applied to the remaining types of bialgebras in the
same way. For the standard type I+ bialgebras we also use (4.9), while for the bialgebras
of type I− we introduce the new generator

N ′ = N − (β−/α−)M. (4.14)

In contrast, no such a kind of transformation is necessary to get the coproducts for the Lie
bialgebras of type II.

The coproducts for the corresponding QUEA of the coboundary oscillator Lie bialgebras
of table 1 are written down in table 3; we denote each multiparametric quantum coalgebra
by U(t m)

αi
(h4) wheret is the type,m = s or m = n according either to the standard or non-

standard oscillator deformations withαi being the deformation parameters. The explicit
expressions for the coproducts ofU

(I+s)

α+,ϑ,β+,β−(h4) andU
(I−s)

α−,ϑ,β+,β−(h4) are rather complicated
so we keep their matrix forms written in terms of the generatorN ′ defined by either (4.9)
or by (4.14), respectively.

The final step in the quantization process of a fixed bialgebra is to find the commutation
relations compatible with its deformed coproduct (the counit and antipode can be obtained
in the form explained in [9]). In the following, we solve completely this problem and
construct the deformed Hopf algebrasU(t m)

αi
(h4) for some representative cases among the

ones included in table 3.
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Table 3. Coproducts for QUEA of the oscillator algebra

Type I+

Standard: U
(I+s)

α+,ϑ,β+,β− (h4) (α+ 6= 0 andα+β− − ϑ2 6= 0)

1(A+) = 1 ⊗ A+ + A+ ⊗ 1 1(M) = 1 ⊗ M + M ⊗ 1

1

(
N ′
A−

)
=

(
1 ⊗ N ′
1 ⊗ A−

)
+ σ

(
exp

{(
α+A+ −β−M

α+M α+A+ + 2ϑM

)}
⊗̇

(
N ′
A−

))
N ′ = N − (β+/α+)M

Non-standard: U
(I+n)

α+,ϑ,β+ (h4) (α+ 6= 0)

1(A+) = 1 ⊗ A+ + A+ ⊗ 11(M) = 1 ⊗ M + M ⊗ 1

1(N) = 1 ⊗ N + N ⊗ (1 − ϑM) exp{α+A+ + ϑM} − (ϑ2/α+)A− ⊗ M exp{α+A+ + ϑM}
+(β+/α+)M ⊗ (1 − (1 − ϑM) exp{α+A+ + ϑM})

1(A−) = 1 ⊗ A− + A− ⊗ (1 + ϑM) exp{α+A+ + ϑM} + (α+N − β+M) ⊗ M exp{α+A+ + ϑM}

Type I−

Standard: U
(I−s)

α−,ϑ,β+,β− (h4) (α− 6= 0 andα−β+ − ϑ2 6= 0)

1(A−) = 1 ⊗ A− + A− ⊗ 11(M) = 1 ⊗ M + M ⊗ 1

1

(
N ′
A+

)
=

(
1 ⊗ N ′
1 ⊗ A+

)
+ σ

(
exp

{( −α−A− β+M

−α−M −α−A− − 2ϑM

)}
⊗̇

(
N ′
A+

))
N ′ = N − (β−/α−)M

Non-standard: U
(I−n)

α−,ϑ,β− (h4) (α− 6= 0)

1(A−) = 1 ⊗ A− + A− ⊗ 11(M) = 1 ⊗ M + M ⊗ 1

1(N) = 1 ⊗ N + N ⊗ (1 + ϑM) exp{−α−A− − ϑM} + (ϑ2/α−)A+ ⊗ M exp{−α−A− − ϑM}
+(β−/α−)M ⊗ (1 − (1 + ϑM) exp{−α−A− − ϑM})

1(A+) = 1 ⊗ A+ + A+ ⊗ (1 − ϑM) exp{−α−A− − ϑM} − (α−N − β+M) ⊗ M exp{−α−A− − ϑM}

Type II

Standard: U
(IIs)
ϑ,ξ,β+,β− (h4) (ξ 6= 0)

1(M) = 1 ⊗ M + M ⊗ 1
1(A+) = 1 ⊗ A+ + A+ ⊗ exp{−(ϑ + ξ)M}
1(A−) = 1 ⊗ A− + A− ⊗ exp{(ϑ − ξ)M}
1(N) = 1 ⊗ N + N ⊗ 1 + (β+/(ϑ + ξ))A+ ⊗ (1 − exp{−(ϑ + ξ)M}) + (β−/(ϑ − ξ))A−

⊗(1 − exp{(ϑ − ξ)M})

Non-standard: U
(IIn)
ϑ,β+,β− (h4)

1(M) = 1 ⊗ M + M ⊗ 1
1(A+) = 1 ⊗ A+ + A+ ⊗ exp{−ϑM}
1(A−) = 1 ⊗ A− + A− ⊗ exp{ϑM}
1(N) = 1 ⊗ N + N ⊗ 1 + (β+/ϑ)A+ ⊗ (1 − exp{−ϑM}) + (β−/ϑ)A− ⊗ (1 − exp{ϑM})

4.2. Non-standard type I+: U(n)
z (h4)

It is remarkable that the oscillator algebra with basis{N, A+, A−, M} can be interpreted as
an extended (1+1) Poincaré algebra whereN is the boost generator,A+ andA− generate the
translations along the light-cone andM is the central generator. This fact raises the question
about whether it is possible to implement in this extended case the universal (non-standard)
quantum deformation of the Poincaré algebra studied in [10] from aT -matrix approach.

Let us consider the non-standard oscillator bialgebras of type I+ with ϑ = β+ = 0 and
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α+ ≡ z. According to table 1 the Lie bialgebra is characterized by commutation relations
(2.1), the classicalr-matrix

r = z N ∧ A+ (4.15)

and cocommutators:

δ(A+) = 0 δ(M) = 0 δ(N) = zN ∧ A+
δ(A−) = z(A− ∧ A+ + N ∧ M). (4.16)

Poisson–Lie brackets are easily deduced from table 2:

{n, a+} = z(en − 1) {n, a−} = 0 {a−, a+} = za−
{n, m} = za− {a+, m} = za−a+ {a−, m} = −za2

−. (4.17)

A quantum deformation for this Lie bialgebra is given by the following statement.

Proposition 2. The coproduct1, counit ε, antipodeγ

1(A+) = 1 ⊗ A+ + A+ ⊗ 1 1(M) = 1 ⊗ M + M ⊗ 1
1(N) = 1 ⊗ N + N ⊗ ezA+ 1(A−) = 1 ⊗ A− + A− ⊗ ezA+ + zN ⊗ MezA+ (4.18)

ε(X) = 0 X ∈ {N, A+, A−, M} (4.19)

γ (A+) = −A+ γ (M) = −M

γ(N) = −N e−zA+ γ (A−) = −A− e−zA+ + zNMe−zA+ (4.20)

and the commutation relations

[N, A+] = ezA+ − 1

z
[N, A−] = −A− [A−, A+] = MezA+

[M, · ] = 0 (4.21)

determine a Hopf algebra (denoted byU(n)
z (h4)) which quantizes the non-standard bialgebra

generated by the classicalr-matrix (4.15).

The coproduct (4.18) is obtained from table 3. Note thatM remains as a central
generator. There is another element belonging to the centre ofU(n)

z h4 whose classical limit
is (2.2), namely

Cz = 2NM + e−zA+ − 1

z
A− + A−

e−zA+ − 1

z
. (4.22)

An important feature of the quantum algebraU(n)
z (h4) is that the generatorsN andA+

form a Hopf subalgebra which coincides exactly with the corresponding quantum Poincaré
algebra of [10]. We recall that for this Hopf subalgebra there is a universalR-matrix given
by

R = exp{−zA+ ⊗ N} exp{zN ⊗ A+}. (4.23)

Obviously, (4.23) satisfies the quantum YBE forU(n)
z h4, but, moreover, it verifies

σ ◦ 1(X) = R1(X)R−1 for X ∈ {N, A+, A−, M}. (4.24)

This assertion must be proved only forM andA−; the proof for the former is trivial since
it is a central generator, and for the latter we have

exp{zN ⊗ A+}1(A−) exp{−zN ⊗ A+} = 1 ⊗ A− + A− ⊗ 1
= 10(A−) exp{−zA+ ⊗ N}10(A−) exp{zA+ ⊗ N} = σ ◦ 1(A−). (4.25)
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The fulfillment of relation (4.24) allows one to use the FRT approach in order to get a
quantum deformation of Fun(H4) by taking into account that in the matrix representation
(2.3) the universalR-matrix (4.23) collapses into

D(R) = I ⊗ I + z(D(N) ⊗ D(A+) − D(A+) ⊗ D(N)) (4.26)

whereI is the 3×3 identity matrix. Therefore, the Hopf structure of the associated oscillator
quantum group is given by

Proposition 3. The coproduct, counit, antipode

1(n̂) = 1 ⊗ n̂ + n̂ ⊗ 1
1(â+) = en̂ ⊗ â+ + â+ ⊗ 1
1(â−) = e−n̂ ⊗ â− + â− ⊗ 1
1(m̂) = 1 ⊗ m̂ + m̂ ⊗ 1 − e−n̂â+ ⊗ â− (4.27)

ε(X) = 0 X ∈ {n̂, â+, â−, m̂} (4.28)

γ (n̂) = −n̂ γ (â+) = −e−n̂â+
γ (â−) = −en̂â− γ (m̂) = −m̂ − (e−n̂â+ en̂)â− (4.29)

together with the commutation relations

[n̂, â+] = z (en̂ − 1) [n̂, â−] = 0 [â−, â+] = zâ−
[n̂, m̂] = zâ− [â+, m̂] = zâ−â+ [â−, m̂] = −zâ2

− (4.30)

constitute a Hopf algebra denoted by Fun(n)
z (H4).

The coproduct (4.27), counit (4.28) and antipode (4.29) are obtained from the relations
1(T) = T ⊗̇ T, ε(T) = I and γ (T) = T−1, whereT ≡ TD is the generic element of the
oscillator groupH4 (2.4). The commutation rules are deduced fromRT1T2 = T2T1R, where
T1 = T ⊗ I, T2 = I ⊗ T andR given by (4.26).

The commutation relations (4.30) can be seen as a Weyl quantization{, } → z−1[, ]
of the fundamental Poisson brackets (4.17). It is also clear that the coalgebra structure of
Fun(n)

z (H4) determined by the coproduct (4.27) and counit (4.28) is valid for any quantum
group which deforms Fun(H4).

Some features of this new quantum oscillator algebra can be emphasized.
• When the central extensionM and its corresponding quantum coordinatem̂ vanish all

results concerning the quantum Poincaré algebra and group given in [10] are recovered. In
this sense, the quantum coordinatesn̂, â+ and â− close a quantum Hopf subalgebra which
coincides exactly with the quantum Poincaré group just mentioned.

• The primitive generator involved in the deformation is nowA+. This fact will be
relevant at a representation theory level and, consequently, from the point of view of the
physical properties of this deformed oscillator.

• The deformed Heisenberg subalgebra generated byA+, A− and M is not a Hopf
subalgebra due to the appearence ofN in 1(A−). However, the Hopf subalgebra structure
can be recovered by working on a representation where the central generatorM is expressed
as a multiple of the identity. In this situation,N can be defined in terms ofA+ and A−
by using the Casimir (4.22). In general, this type of non-standard deformed bosons can
be expected to build upq-boson realizations of the already known non-standard quantum
algebras [17, 18].

4.3. Non-standard type II:U(II n)
ϑ,β+,β−(h4)

The classicalr-matrix

r = ϑN ∧ M + β+A+ ∧ M + β−A− ∧ M (4.31)
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originates a non-standard three-parametric oscillator bialgebra of type II whose
cocommutators and associated Poisson–Lie brackets appear in tables 1 and 2, respectively.
A quantum deformation of this coboundary Lie bialgebra is given by

Proposition 4. The Hopf algebra denoted byU(II n)
ϑ,β+,β−(h4) which quantizes the oscillator

bialgebra generated by (4.31) has coproduct given in table 3, counit (4.19), antipode

γ (M) = −M γ(A+) = −A+ eϑM γ (A−) = −A− e−ϑM

γ (N) = −N − (β+/ϑ)A+(1 − eϑM) − (β−/ϑ) A−(1 − e−ϑM) (4.32)

and commutation relations

[N, A+] = A+ − β−V (−ϑ) [N, A−] = −A− − β+V (ϑ)

[A−, A+] = M [M, · ] = 0 (4.33)

where

V (x) := 1

x2
(exM − 1 − xM). (4.34)

Note that limx→0 V (x) = M2/2. The quantum analogue of (2.2),

Cϑ,β+,β− = 2NM − A+A− − A−A+ + 2β− V (−ϑ)A− − 2β+ V (ϑ)A+ (4.35)

belongs to the centre ofU(IIn)
ϑ,β+,β−(h4).

It is worth remarking that this quantum oscillator algebra can be related the results of
[12]: U

(II n)
ϑ,β+,β−(h4) can be seen as a type II case withp ≡ ϑ , q ≡ −ϑ , b ≡ β− andc ≡ −β+.

Moreover,

Proposition 5. The element

R = exp{r} = exp{ϑN ∧ M + β+A+ ∧ M + β−A− ∧ M}
= exp{−M ⊗ (ϑN + β+A+ + β−A−)}

× exp{(ϑN + β+A+ + β−A−) ⊗ M} (4.36)

satisfies both the quantum YBE and relation (4.24), so it is a universalR-matrix for
U

(II n)
ϑ,β+,β−(h4).

SinceM is a central generator, it is clear that (4.36) is a solution of the quantum YBE.
The proof for property (4.24) is sketched in appendix A. In the matrix representation (2.3)
we get

D(R) = I ⊗ I + ϑD(N) ∧ D(M) + β+D(A+) ∧ D(M) + β−D(A−) ∧ D(M). (4.37)

The FRT prescription leads now to another multiparametric quantum deformation of the
algebra of the smooth functions on the oscillator group Fun(II n)

ϑ,β+,β−(H4), given by coproduct
(4.27), counit (4.28), antipode (4.29) and the non-vanishing commutation rules

[â+, m̂] = −ϑâ+ + β+(en̂ − 1) [â−, m̂] = ϑâ− + β−(e−n̂ − 1). (4.38)

The classical limit (in the three parameters) is Fun(H4) and, once more, commutators (4.38)
are a Weyl quantization of the Poisson–Lie brackets written in table 2.
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4.4. Standard type II:U(s)
z (h4)

The classicalr-matrix which solves the classical YBE and underlies the quantum oscillator
algebra obtained in [8, 11] by a contraction method can be expressed in our notation as

r = −z (N ⊗ M + M ⊗ N) + 2z A− ⊗ A+. (4.39)

Its symmetric (r+) and skew-symmetric (r−) parts are

r+ = (r + σ ◦ r)/2 = z(A− ⊗ A+ + A+ ⊗ A−) − z(N ⊗ M + M ⊗ N) (4.40)

r− = (r − σ ◦ r)/2 = zA− ∧ A+. (4.41)

The symmetric partr+ corresponds to the elementη (3.12) with the parametersτ1 = −z

and τ2 = 0. On the other hand,r− can be identified with a standard classicalr-matrix of
type 2 with parametersϑ = β+ = β− = 0 andξ ≡ −z (see table 1). Both the standard
r-matrix (which coincides withr− (4.41)) and the non-antisymmetric one (4.39) give rise
to the same oscillator bialgebra with cocommutators

δ(N) = δ(M) = 0 δ(A+) = z A+ ∧ M δ(A−) = z A− ∧ M. (4.42)

The associated non-vanishing Poisson–Lie brackets (see table 2) are

{a+, m} = z a+ {a−, m} = z a−. (4.43)

The quantum deformation of this coboundary oscillator bialgebra is given by:

Proposition 6. The quantum algebra which quantizes the standard bialgebra generated by
(4.39) has a Hopf structure denoted byU(s)

z (h4) and characterized by the coproduct, counit,
antipode

1(N) = 1 ⊗ N + N ⊗ 1 1(A′
+) = e−zM ⊗ A′

+ + A′
+ ⊗ 1

1(M) = 1 ⊗ M + M ⊗ 1 1(A−) = 1 ⊗ A− + A− ⊗ ezM (4.44)

ε(X) = 0 X ∈ {N, A′
+, A−, M} (4.45)

γ (N) = −N γ (M) = −M γ(A′
+) = −A′

+ ezM γ (A−) = −A− e−zM (4.46)

together with the commutation relations

[N, A′
+] = A′

+ [N, A−] = −A− [A−, A′
+] = sinh(zM)

z
[M, · ] = 0. (4.47)

The quantum Casimir is

Cz = 2N
sinh(zM)

z
− A′

+A− − A−A′
+. (4.48)

The coproducts (4.44) are just those given in table 3 but written in terms of a new
generatorA′

+ = eξMA+ whereξ = −z. In this case the universalR-matrix adopts a much
simpler form than the one already known from [8, 11]. Namely,

R = exp{−z(N ⊗ M + M ⊗ N)} exp{2zA− ⊗ A′
+}

= exp{−zN ⊗ M} exp{−zM ⊗ N} exp{2z A− ⊗ A′
+}. (4.49)

It is worth remarking that all the quantumR-matrices given in this section are obtained
via a straightforward exponentiation process from their classical counterparts (compare, for
instance, (4.49) to (4.39)).

The FRT prescription can be applied leading to the commutation rules of the quantum
group Fun(s)z (H4) by taking into account that (4.49) in the matrix representation (2.3) is just

D(R) = I ⊗ I + 2zD(A−) ⊗ D(A′
+) − z(D(N) ⊗ D(M) + D(M) ⊗ D(N)) (4.50)
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(note thatD(A′
+) ≡ D(N)). In this way, the non-vanishing commutators of Fun(s)

z (H4) read

[â+, m̂] = zâ+ [â−, m̂] = zâ− (4.51)

and correspond to a Weyl quantization of the Poisson–Lie brackets (4.43).

5. Concluding remarks

We have presented a systematic procedure in order to study the coboundary Lie bialgebras of
the oscillator algebra. The first-order deformations given by the corresponding cocomutators
have been used to construct, by a sort of ‘exponentiation’ process, multiparametric quantum
deformations of the oscillator algebra. We point out that we have not treated the question
of the equivalence of the coboundary oscillator bialgebras we have obtained, indeed this is
actually a problem by itself. For instance, from an algebraic point of view, bialgebras of
types I+ and I− can be related by interchanging generatorsA+ andA−, although this result
is not so straightforward if we look at their corresponding Poisson–Lie groups.

It is worth stressing that, in the case analysed here, the complete (and rich) classification
of the classicalr-matrices (and, therefore, of the corresponding Poisson structures on the
oscillator group) is easily obtained. This seems to indicate that, at least for Lie algebras
with a low enough dimension, the complete solution of the modified classical YBE for an
arbitrary skew element ofg ⊗ g can be explicitly deduced giving rise to a great number of
new results.

This kind of procedure is complementary (and dual) to that developed in [12], since it
allows us to focus on the deformation at the quantum algebra level and look for universal
quantumR-matrices. In fact, given a skew solutionr of the modified classical YBE and a
matrix representationD of the quantum algebra, the elementD(R) = 1 + zD(r) will lead
us to the correspondingR-matrix method.

This approach can be seen as a part of research program that, in order to construct and
study quantum algebras, tries to extract as much information as possible from the associated
Lie bialgebras (as far as contraction methods are concerned, see for instance [19]). It would
be interesting to apply it to other physically interesting algebras whose coboundary bialgebra
structures are not well known, among them, we would like to mention the Schrödinger,
optical and Galilean algebras, also with the aim of obtaining some (universal) quantum
deformations.
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Appendix

The main steps necessary to prove that theR-matrix (4.36) verifies the property (4.24)
for the generatorsA+, A− and N (for M the proof is trivial) are as follows. We
perform the computations by writing theR-matrix in terms of two exponentialsR =
exp{−M ⊗ W } exp{W ⊗ M}, where W ≡ ϑN + β+A+ + β−A−. We note that
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exp{W ⊗ M}1(A+) exp{−W ⊗ M}
= 1 ⊗ A+ + A+ ⊗ 1 − β−V (−ϑ) ⊗ (1 − e−ϑM) + (β−/ϑ)M ⊗ (1 − e−ϑM)

= 10(A+) + (β−/ϑ2)(1 − e−ϑM) ⊗ (1 − e−ϑM). (A.1)

Since the second term of (A.1) is central, we compute

exp{−M ⊗ W }10(A+) exp{M ⊗ W }
= e−ϑM ⊗ A+ + A+ ⊗ 1 + β−(1 − e−ϑM)

⊗V (−ϑ) − (β−/ϑ)(1 − e−ϑM) ⊗ M

= σ ◦ 1(A+) − (β−/ϑ2)(1 − e−ϑM) ⊗ (1 − e−ϑM). (A.2)

From these expressionsR1(A+) R−1 = σ ◦ 1(A+) is easily derived. The proof forA− is
rather similar, and for the generatorN we shall have

exp{W ⊗ M}1(N) exp{−W ⊗ M}
= 1 ⊗ N + N ⊗ 1 − (β+β−/ϑ2)

{
ϑV (ϑ) ⊗ (1 − eϑM) + M ⊗ (1 − e−ϑM)

}
+(β+β−/ϑ2){ϑV (−ϑ) ⊗ (1 − eϑM) − M ⊗ (1 − e−ϑM)}

= 10(N) + (β+β−/ϑ3){(1 − eϑM)

⊗ (1 − eϑM) − (1 − e−ϑM) ⊗ (1 − e−ϑM)}. (A.3)

Now we compute

exp{−M ⊗ W }10(N) exp{M ⊗ W }
= 10(N) + (β+/ϑ)(1 − e−ϑM) ⊗ A+ + (β−/ϑ) (1 − eϑM) ⊗ A−

+(β+β−/ϑ){(1 − eϑM) ⊗ V (ϑ) − (1 − e−ϑM) ⊗ V (−ϑ)}
+(β+β−/ϑ2)(2 − eϑM − e−ϑM) ⊗ M

= σ ◦ 1(N) − (β+β−/ϑ3){(1 − eϑM)

⊗ (1 − eϑM) − (1 − e−ϑM) ⊗ (1 − e−ϑM)} (A.4)

to obtain againR1(N) R−1 = σ ◦ 1(N).
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